高考數學是壹門比較占分的科目,但數學也比較難,難在它的深度和廣度,但如果能理清思路,抓住重點,多加練習,學渣變學霸也不是不可能的。高考數學知識點2023有哪些?壹起來看看高考數學知識點2023,歡迎查閱!
高中數學各知識點公式定理記憶口訣
集合與函數
內容子交並補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。
復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。
指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。
函數定義域好求。分母不能等於0,偶次方根須非負,零和負數無對數;
正切函數角不直,余切函數角不平;其余函數實數集,多種情況求交集。
兩個互為反函數,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸;
求解非常有規律,反解換元定義域;反函數的定義域,原來函數的值域。
冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數,
奇母偶子偶函數,偶母非奇偶函數;圖象第壹象限內,函數增減看正負。
三角函數
三角函數是函數,象限符號坐標註。函數圖象單位圓,周期奇偶增減現。
同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;
中心記上數字1,連結頂點三角形;向下三角平方和,倒數關系是對角,
頂點任庖緩扔諍竺媼礁S盞脊驕褪嗆茫夯蟠蠡。?nbsp;
變成稅角好查表,化簡證明少不了。二的壹半整數倍,奇數化余偶不變,
將其後者視銳角,符號原來函數判。兩角和的余弦值,化為單角好求值,
余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。
計算證明角先行,註意結構函數名,保持基本量不變,繁難向著簡易變。
逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。
萬能公式不壹般,化為有理式居先。公式順用和逆用,變形運用加巧用;
1加余弦想余弦,1減余弦想正弦,冪升壹次角減半,升冪降次它為範;
三角函數反函數,實質就是求角度,先求三角函數值,再判角取值範圍;
利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集;
不等式
解不等式的途徑,利用函數的性質。對指無理不等式,化為有理不等式。
高次向著低次代,步步轉化要等價。數形之間互轉化,幫助解答作用大。
證不等式的 方法 ,實數性質威力大。求差與0比大小,作商和1爭高下。
直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。
還有重要不等式,以及數學歸納法。圖形函數來幫助,畫圖建模構造法。
數列
等差等比兩數列,通項公式N項和。兩個有限求極限,四則運算順序換。
數列問題多變幻,方程化歸整體算。數列求和比較難,錯位相消巧轉換,
取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考:
壹算二看三聯想,猜測證明不可少。還有數學歸納法,證明步驟程序化:
首先驗證再假定,從K向著K加1,推論過程須詳盡,歸納原理來肯定。
復數
虛數單位i壹出,數集擴大到復數。壹個復數壹對數,橫縱坐標實虛部。
對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。
箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試壹試。
代數運算的實質,有i多項式運算。i的正整數次慕,四個數值周期現。
壹些重要的結論,熟記巧用得結果。虛實互化本領大,復數相等來轉化。
利用方程思想解,註意整體代換術。幾何運算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。
三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。
輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與***軛,
兩個不會為實數,比較大小要不得。復數實數很密切,須註意本質區別。
排列、組合、二項式定理
加法乘法兩原理,貫穿始終的法則。與序無關是組合,要求有序是排列。
兩個公式兩性質,兩種思想和方法。歸納出排列組合,應用問題須轉化。
排列組合在壹起,先選後排是常理。特殊元素和位置,首先註意多考慮。
不重不漏多思考,捆綁插空是技巧。排列組合恒等式,定義證明建模試。
關於二項式定理,中國楊輝三角形。兩條性質兩公式,函數賦值變換式。
立體幾何
點線面三位壹體,柱錐 臺球 為代表。距離都從點出發,角度皆為線線成。
垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環現。
方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。
立體幾何輔助線,常用垂線和平面。射影概念很重要,對於解題最關鍵。
異面直線二面角,體積射影公式活。公理性質三垂線,解決問題壹大片。
平面解析幾何
有向線段直線圓,橢圓雙曲拋物線,參數方程極坐標,數形結合稱典範。
笛卡爾的觀點對,點和有序實數對,兩者―壹來對應,開創幾何新途徑。
兩種思想相輝映,化歸思想打前陣;都說待定系數法,實為方程組思想。
三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。
四件工具是法寶,坐標思想參數好;平面幾何不能丟,旋轉變換復數求。
解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學。
高三數學 復習重要知識點
知識點1
1.對於函數f(x),如果對於定義域內任意壹個x,都有f(-x)=-f(x),那麽f(x)為奇函數;
2.對於函數f(x),如果對於定義域內任意壹個x,都有f(-x)=f(x),那麽f(x)為偶函數;
3.壹般地,對於函數y=f(x),定義域內每壹個自變量x,都有f(a+x)=2b-f(a-x),則y=f(x)的圖象關於點(a,b)成中心對稱;
4.壹般地,對於函數y=f(x),定義域內每壹個自變量x都有f(a+x)=f(a-x),則它的圖象關於x=a成軸對稱。
5.函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;
6.由函數奇偶性定義可知,函數具有奇偶性的壹個必要條件是,對於定義域內的任意壹個x,則-x也壹定是定義域內的壹個自變量(即定義域關於原點對稱).
知識點2
壹、充分條件和必要條件
當命題“若A則B”為真時,A稱為B的充分條件,B稱為A的必要條件。
二、充分條件、必要條件的常用判斷法
1.定義法:判斷B是A的條件,實際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關系畫出箭頭示意圖,再利用定義判斷即可
2.轉換法:當所給命題的充要條件不易判斷時,可對命題進行等價裝換,例如改用其逆否命題進行判斷。
3.集合法
在命題的條件和結論間的關系判斷有困難時,可從集合的角度考慮,記條件p、q對應的集合分別為A、B,則:
三、知識擴展
1.四種命題反映出命題之間的內在聯系,要註意結合實際問題,理解其關系(尤其是兩種等價關系)的產生過程,關於逆命題、否命題與逆否命題,也可以敘述為:
(1)交換命題的條件和結論,所得的新命題就是原來命題的逆命題;
(2)同時否定命題的條件和結論,所得的新命題就是原來的否命題;
(3)交換命題的條件和結論,並且同時否定,所得的新命題就是原命題的逆否命題。
2.由於“充分條件與必要條件”是四種命題的關系的深化,他們之間存在這密切的聯系,故在判斷命題的條件的充要性時,可考慮“正難則反”的原則,即在正面判斷較難時,可轉化為應用該命題的逆否命題進行判斷。壹個結論成立的充分條件可以不止壹個,必要條件也可以不止壹個。
高考數學復習重點 總結
第壹,高考數學中有函數、數列、三角函數、平面向量、不等式、立體幾何等九大章節
主要是考函數和導數,這是我們整個高中階段裏最核心的板塊,在這個板塊裏,重點考察兩個方面:第壹個函數的性質,包括函數的單調性、奇偶性;第二是函數的解答題,重點考察的是二次函數和高次函數,分函數和它的壹些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第壹個板塊。
第二,平面向量和三角函數
重點考察三個方面:壹個是劃減與求值,第壹,重點掌握公式,重點掌握五組基本公式。第二,是三角函數的圖像和性質,這裏重點掌握正弦函數和余弦函數的性質,第三,正弦定理和余弦定理來解三角形。難度比較小。
第三,數列
數列這個板塊,重點考兩個方面:壹個通項;壹個是求和。
第四,空間向量和立體幾何
在裏面重點考察兩個方面:壹個是證明;壹個是計算。
第五,概率和統計
這壹板塊主要是屬於數學應用問題的範疇,當然應該掌握下面幾個方面,第壹……等可能的概率,第二………事件,第三是獨立事件,還有獨立重復事件發生的概率。
第六,解析幾何
這是我們比較頭疼的問題,是整個試卷裏難度比較大,計算量的題,當然這壹類題,我總結下面五類常考的題型,包括第壹類所講的直線和曲線的位置關系,這是考試最多的內容。考生應該掌握它的通法,第二類我們所講的動點問題,第三類是弦長問題,第四類是對稱問題,這也是2008年高考已經考過的壹點,第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當然這裏我相等的是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當,因此,在這壹章裏我們要掌握比較好的算法,來提高我們做題的準確度,這是我們所講的第六大板塊。
第七,押軸題
考生在備考復習時,應該重點不等式計算的方法,雖然說難度比較大,我建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。
高考數學知識點2023相關 文章 :
★ 2021年數學高考知識點
★ 高中數學知識點總結歸納最新
★ 高考數學知識點大全
★ 高考數學知識點總結歸納
★ 高考數學知識點歸納整理
★ 高考數學知識點總結最新整理
★ 2020高考數學知識點總結大全
★ 高考數學必考知識點最新整理
★ 2020高考數學知識點大全
★ 2020高考文科數學知識點